
ФИЗИОЛОГИЯ ЧЕЛОВЕКА с основами патофизиологии

редакторы Р. Ф. ШМИДТ Ф. ЛАНГ М. ХЕКМАНН

ФИЗИОЛОГИЯ ЧЕЛОВЕКА с основами патофизиологии

ROBERT F. SCHMIDT (HRSG.) FLORIAN LANG (HRSG.) MANFRED HECKMANN (HRSG.)

PHYSIOLOGIE DES MENSCHEN

mit Pathophysiologie

31., uberarbeitete und aktualisierte Auflage

Mit 589 vierfarbigen Abbildungen in 1172 Einzeldarstellungen und 85 Tabellen

Mit herausnehmbaren Repetitorium

ФИЗИОЛОГИЯ ЧЕЛОВЕКА

с основами патофизиологии

Редакторы Р. Ф. ШМИДТ, Ф. ЛАНГ, М. ХЕКМАНН

В двух томах

Перевод с немецкого

под редакцией доктора биол. наук М. А. Каменской доктора биол. наук В. М. Ковальзона доктора биол. наук И. В. Филипповича канд. биол. наук В. Н. Егоровой канд. биол. наук Т. В. Липиной Т. С. Филатовой и Е. К. Селивановой

Москва Лаборатория знаний УДК 612 ББК 28.707.3+52.5 Ф50

Переводчики:

К. Л. Тарасов, А. Ю. Головина, Д. И. Земледельцев

Редакторы перевода:

М. А. Каменская, В. М. Ковальзон, И. В. Филиппович, Т. В. Липина, В. Н. Егорова, Т. С. Филатова, Е. К. Селиванова

Физиология человека с основами патофизиологии : в 2 т. Ф50 Т. 2 / под ред. Р. Ф. Шмидта, Ф. Ланга, М. Хекманна ; пер. с нем. под ред. М. А. Каменской и др. — М. : Лаборатория знаний, 2019.-494 с. : ил.

ISBN 978-5-906828-32-3 (T. 2) ISBN 978-5-906828-30-9

Почему возникает жажда? Почему мы должны спать? Почему без дыхания мы не проживем и пяти минут? В этой, ставшей для многих настольной, книге вы узнаете, как «работает» человеческий организм. В ней раскрывается множество тем, в частности физиология клеточного дыхания, работы головного мозга, сердца и почек. Студенты найдут здесь все, что необходимо для учебы. Авторы, эксперты с общемировой известностью, знают и умеют объяснять свой предмет, как никто другой. В специальных информационных блоках кратко представлены ключевые понятия, более 1100 иллюстраций помогают закреплять знания визуально, а обсуждение свыше 200 клинических примеров окажет неоценимую поддержку будущим врачам в их повседневной клинической практике. Новое издание послужит идеальным руководством для обучения и повторения материала перед экзаменом.

Для студентов медицинских, биологических вузов, врачей различных специальностей.

УДК 612 ББК 28.707.3+52.5

Приведенные в книге показания к применению, противопоказания и дозировки препаратов настоятельно рекомендуется сверять с информацией их производителей и соотносить с клиническими процедурами. Авторы, редакторы и издатель не несут никакой юридической ответственности за любые содержащиеся в тексте и иллюстрациях ошибки или упущения.

Редакция искренне благодарит всех, кто принимал участие в процессе подготовки нового русского издания книги

Учебное издание

ФИЗИОЛОГИЯ ЧЕЛОВЕКА с основами патофизиологии

В двух томах Том 2

Ведущий редактор канд. биол. наук В. В. Гейдебрехт Художественный редактор В. А. Прокудин Технический редактор Т. Ю. Федорова. Корректор И. Н. Панкова Компьютерная верстка: В. И. Савельев

Подписано в печать 15.11.18. Формат $60 \times 90/8$. Усл. печ. л. 62,00. Заказ

Издательство «Лаборатория знаний» 125167, Москва, проезд Аэропорта, д. 3 Телефон: (499) 157-5272 e-mail: info@pilotLZ.ru, http://www.pilotLZ.ru

Translation from the German language edition: Physiologie des Menschen edited by Robert F. Schmidt, Florian Lang, Manfred Heckmann

Copyright © Springer Medizin Verlag Heidelberg 1936, 1938, 1948, 1955, 1956, 1960, 1964, 1966, 1971, 1973, 1976, 1977, 1980, 1983, 1985, 1987, 1990, 1993, 1995, 1997, 2000, 2005, 2007, 2011

Springer is a part of Springer Science + Business Media All Rights Reserved

© Лаборатория знаний, 2019

ISBN 978-5-906828-32-3 (T. 2) ISBN 978-5-906828-30-9

ОГЛАВЛЕНИЕ

V. Кровь и иммунная защита	26.3. Диаграмма работы сердца84
	26.4. Взаимодействие сердца и кровеносной системы .88
Глава 23. Кровь	26.5. Регуляция силы сокращения сердца92
Вольфганг Йелкманн	26.6. Сердечная недостаточность
Введение	26.7. Исследование механики сердца у пациента 99
23.1. Функции и состав крови	Литература103
23.2. Плазма крови	
23.3. Эритроциты	Глава 27. Обмен веществ в сердце и коронарный
23.4. Лейкоциты	кровоток104
23.5. Тромбоциты	Андреас Дойссен
23.6. Остановка кровотечения и свертывание крови 27	Введение
23.7. Группы крови человека	27.1. Энергетический обмен миокарда
Литература	27.2. Субстраты и обмен веществ
	27.3. Коронарный кровоток
Глава 24. Иммунная система	Литература
Введение	Глава 28. Кровообращение11
24.1. Врожденный иммунитет	Ральф П. Брандес, Руди Буссе
24.2. Приобретенный иммунитет	Введение11
24.3. Патофизиология иммунной системы	28.1. Введение и механика кровотока
Литература	28.2. Свойства стенок сосудов и артериальная гемодинамика
	28.3. Система низкого давления12
VI. Сердце и кровеносная система	28.4. Микроциркуляция
т. Сордцо и продолостал системи	28.5. Нервная регуляция кровоснабжения
Глава 25. Электрофизиология сердца52	28.6. Компоненты базального сосудистого тонуса 136
Ханс-Михаэль Пипер	28.7. Модуляция тонуса сосудов циркулирующими гормонами и вазоактивными пептидами
Введение	28.8. Эндотелий: центральный модулятор
и в возбужденном состоянии52	сосудистых функций
25.2. Проводящая система сердца57	28.9. Синопсис локальной и системной регуляции кровоснабжения
25.3. Электрокардиограмма	28.10. Механизмы долгосрочной регуляции
Литература	28.11. Адаптация системы кровообращения к меняющимся условиям
Глава 26. Механика сердца76	28.12. Малый круг кровообращения
Юрген Даут	28.13. Особенности кровообращения в различных
Введение	органах
26.1. Сердце как мышечный насос	28.14. Измерение параметров кровообращения169
26.2. Механизм Франка–Старлинга и закон Лапласа 79	Литература17

VII. Регуляция внутренней среды организма	32.2. Вентиляция легких
	32.3. Механика дыхания
Глава 29. Почки	32.4. Газообмен в легких
Флориан Ланг	32.5. Перфузия легких и артериализация крови 279
Введение	Литература
29.1. Функции и строение почек	
29.2. Почечное кровообращение и клубочковая фильтрация178	Глава 33. Регуляция дыхания
29.3. Процессы транспорта в проксимальных канальцах	Введение
29.4. Транспортные процессы в петле Генле	33.1. Дыхательный ритм
и концентрирование мочи	33.2. Дыхательные центры
29.5. Транспортные процессы в дистальной части	33.3. Химический контроль дыхания
нефрона	33.4. Рефлекторный контроль дыхания
29.6. Нарушение процессов транспорта, влияние диуретиков, уролитиаз	Литература301
29.7. Метаболизм почек и протекающие в них	France 24 Thousands of the second sec
биохимические процессы	Глава 34. Транспорт дыхательных газов302 Вольфганг Йелкман
29.8. Регуляция функционирования почек	•
29.9. Гормоны почек	Введение
29.10. Важнейшие количественные характеристики функционирования почек	34.2. Гемоглобин
Литература	34.3. Транспорт О ₂ в крови
	34.4. Транспорт CO ₂ в крови
Глава 30. Водный и электролитный обмен216	34.5. Зародышевый газообмен
Понтус Б. Перссон	Литература
Введение	7 mopalypa
30.1. Водно-электролитный баланс	Глава 35. Кислотно-основный баланс 315 Флориан Ланг
и межклеточном пространствах	Введение
30.3. Регулирование выделения воды и соли	35.1. Уровень рН и его поддержание за счет буферов 315
30.4. Регулирование потребления воды и соли	35.2. Регулирование рН
30.5. Нарушения водно-электролитного обмена230	35.3. Нарушения кислотно-основного баланса 324
30.6. Калиевый обмен	Литература
Глава 31. Обмен кальция, магния и фосфора 237 Флориан Ланг, Хайни Мурер	Глава 36. Кислород в тканях: субстрат, сигнал и повреждающий фактор 329 Ульрих Пол
Введение	Введение
31.1. Физиологическое значение фосфата кальция 237	36.1. Потребность в кислороде
31.2. Регулирование обмена фосфата кальция 239	36.2. Обеспечение ткани кислородом
31.3. Кость	36.3. Последствия дефицита кислорода
31.4. Нарушения обмена фосфата кальция	36.4. Кислород как сигнальная молекула340
31.5. Магниевый обмен	36.5. Кислород как повреждающий фактор341
Литература	Литература
VIII. Процесс дыхания	IX. Обмен веществ, работа, возраст
Глава 32. Легочное дыхание252	
Карл Кунцельманн, Оливер Тьюс	Глава 37. Питание
Введение	Ханс К. Бизальски
32.1. Основные механизмы, лежащие в основе	Введение
процесса дыхания	37.1. Рацион питания

39.6. Терморегуляция в норме и при патологии 425
Литература
Глава 40. Спортивная физиология и физиология
труда
Введение
40.1. Мощность и производительность
40.2. Продукция энергии
40.3. Аэробная и анаэробная нагрузка
40.4. Физиологические адаптации к физической активности
40.5. Нагрузочные тесты
40.6. Моторное обучение и тренировка
40.7. Усталость, истощение, перегрузка и отдых
40.8. Допинг
Литература
Глава 41. Старость и старение
Введение
41.1. Что такое старение?
41.2. Клеточные и молекулярные механизмы
старения
41.3. Изменения органов в старости
41.4. Функциональные нарушения и болезни
41.5. Вмешательство в процесс старения
Литература471
,,,,,,opa,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Приложение
А1 Таблицы
A2.0====== 400
А2 Словарь сокращений
АЗ Единицы измерения и физиологические нормы 489

V

КРОВЬ И ИММУННАЯ ЗАЩИТА

ГЛАВА 23. КРОВЬ

ГЛАВА 24. ИММУННАЯ СИСТЕМА

Глава 23

Кровь

Вольфганг Йелкманн

Введение

Пациент 40 лет с детства страдал болезнью почек и нуждался в проведении периодических процедур гемодиализа. После неудачной пересадки почки ему, несмотря на лечение андрогенами, требовалось переливание эритроцитов каждые 2-3 недели. На момент обследования он получил свыше 300 порций крови и имел положительную реакцию на ВИЧ. Он был одним из первых пациентов, которые стали принимать рекомбинантный человеческий эритропоэтин (рчЭПО) для лечения угрожающей жизни анемии. Через несколько месяцев после начала курса рчЭПО показатели гемоглобина у него нормализовались и в дальнейшем сохранялись. Общее состояние больного улучшилось настолько, что он смог вернуться к своей прежней работе продавца.

23.1. Функции и состав крови

Функции крови

Кровь — жидкая ткань, которая переносит клетки и растворенные вещества; наряду с прочими функциями, кровь важна для транспорта газов при дыхании, регуляции температуры и защиты от патогенов.

Транспортная функция

- Кровь участвует в транспорте различных молекул и клеток.
- Кровь связывает и переносит газы при дыхании,
 т. е. О₂ от легких к периферическим тканям,
 а СО₂ обратно к легким (гл. 34).
- Кровь переносит **питательные вещества** от мест их абсорбции или хранения к местам потребления; обратно она транспортирует **метаболиты**

- к местам их дальнейшего использования или к органам выделения.
- Кровь **транспортирует** гормоны, витамины и минеральные вещества.
- Благодаря большой теплоемкости своего главного компонента воды кровь распределяет тепло, выделяемое в процессе метаболизма, и обеспечивает теплоотдачу через кожу.

Функция среды. Химические и физические свойства крови при циркулировании по телу постоянно контролируются и при необходимости корректируются таким образом, что поддерживается гомеостаз. Это означает, что концентрации растворенных веществ, значение рН и температура поддерживаются на постоянном уровне.

Свертываемость крови. Кровь обладает важной способностью в процессе первичного и вторичного гемостаза противодействовать кровотечению за счет сворачивания и закупоривания поврежденных сосудов (разд. 23.6).

Защитная функция. Внедряющиеся в организм инородные тела и возбудители болезней обезвреживаются за счет растворимых белков, а также белых кровяных телец, или лейкоцитов, обладающих фагоцитарной активностью и образующих антитела (гл. 34).

Объем крови у человека и ее компоненты

В организме взрослого человека примерно 5 л крови, состоящей преимущественно из плазмы и эритроцитов; кроме того, в крови присутствуют лейкоциты и тромбоциты.

Объем. У взрослого человека объем крови составляет 6–8% от массы тела, у ребенка — 8–9%. Таким образом, у взрослых объем крови достигает 3,5–5,5 л (нормоволемия). Увеличение этого показателя называют гиперволемией, а уменьшение — гиповолемией.

Состав. Кровь представляет собой мутноватую жидкость красного цвета. Она состоит из желтоватой жидкой плазмы (которая без фибриногена называется сывороткой) и суспендированных в ней красных кровяных телец (эритроцитов), белых кровяных телец (лейкоцитов) и кровяных пластинок (тромбоцитов). Анализ крови имеет большое значение в клинической диагностике, так как пробу крови легко получить, а ее состав и свойства при многих заболеваниях изменяются характерным образом.

Гематокрит. Доля **эритроцитов** в общем объеме крови называется гематокритом (Гкт). У здоровой взрослой **женщины** гематокрит составляет в среднем **0,42**, а у **мужчины 0,47**. У новорожденных его значение примерно на 20% выше, а у маленьких детей на 10% ниже, чем у женщин.

••• Определение Гкт. Для определения Гкт (по Винтробу) относительно тяжелые эритроциты (из несвертывающейся пробы крови) отделяют от плазмы посредством центрифугирования в стандартизированных пробирках (пробирках для Гкт) при 1000 g в течение 1 мин (g – относительное ускорение гравитации). Центрифугирование приводит также к отделению более легких тромбоцитов и лейкоцитов, которые образуют тонкий беловатый слой между осажденными эритроцитами и плазмой. С помощью современных автоматических приборов для подсчета числа клеток (гематологических счетчиков) и аналитических устройств, исходя из среднего объема эритроцитов (mean corpuscular volume, MCV) и их концентрации подсчитывают Гкт. На основе особенностей реологических свойств эритроцитов устанавливают значения Гкт в отдельных органах. Кроме того, имеются различия между венозной (относительно высокий Гкт), артериальной и капиллярной кровью. Умножение значения Гкт, измеренного в локтевой вене, на 0,9 дает показатель, соответствующий среднему гематокриту цельной крови.

Определение объема крови. Зная средний гематокрит и объем плазмы крови (PV), можно вычислить объем крови (BV) по формуле BV = $PV/1-0.9 \times Hkt$). PV может быть установлен методом разведения после внутривенной инъекции красителя (Evans blue), который связывается с белками плазмы или радиоактивно меченными белками.

Гкт и вязкость крови. Относительно воды (ее вязкость равна 1) средняя вязкость крови здорового взрослого человека составляет 2,2 (1,9–2,6). Вязкость крови возрастает с повышением Гкт не прямо пропорционально (разд. 28.1). Поскольку сопротивление потока крови линейно возрастает с вязкостью, патологическое увеличение гематокрита ведет к перегрузке сердца и при определенных обстоятельствах к недостаточному кровоснабжению органов.

Коротко

Функции и состав крови

Циркулирующая кровь — важная транспортная среда, снабжающая ткани O_2 , питательными веществами и витаминами. Кроме того, транспортируя гормоны, кровь является важным каналом связи между органами.

Количество крови у взрослого человека достигает примерно 7% от массы_тела, т. е. 4–6 л (нормоволемия). Кровь состоит из неклеточного компонента — плазмы (без фибриногена называется сывороткой) и форменных элементов. Более 99% массы последних составляют эритроциты, которые содержат красный пигмент гемоглобин и необходимы для транспортировки дыхательных газов. Доля эритроцитов в общем объеме крови обозначается как гематокрит. В среднем он составляет у женщин 0,42, а у мужчин 0,47. С увеличением гематокрита увеличивается вязкость крови.

23.2. Плазма крови

Электролиты плазмы

Плазма крови состоит из воды, белков и низкомолекулярных веществ; электролиты плазмы поддерживают осмотическое давление крови.

Концентрации электролитов. В **табл. 23.1** дан обзор ионного состава плазмы крови. В норме концентрация отдельных ионов поддерживается в узких границах (**изоиония**). Концентрации Na⁺ и Cl⁻

Таблица 23.1. Средние значения концентрации электролитов и неэлектролитов в плазме крови человека

	г/л	мвал/л	ммоль/кг воды плазмы
Электролиты			
Катионы			
Натрий	3,27	142	152
Калий	0,16	4	4
Кальций	0,10	5	3
Магний	0,03	3	1,6
Bcero		154	
Анионы			
Хлорид	3,65	103	110
Бикарбонат	1,65	27	29
Фосфат	0,10	2	1
Сульфат	0,05	1	1
Органические кислоты		5	
Белки	65-80	16	
Всего		154	
Неэлектролиты			
Глюкоза	0,7-1,1		5
Мочевина	0,40		7

обусловливают распределение воды в организме. Концентрация внеклеточного K^+ существенно влияет на мембранный потенциал покоя электрически возбудимых тканей. Кальциевая фракция состоит примерно на 50% из свободного Ca^{2+} , остальная часть кальция преимущественно связана с белками (45%).

Мерой концентрации какого-либо вещества в растворе являются молярность (моль/л) и нормальность (моль-эквивалентов/л = моль × валентность/л). Чтобы учесть уменьшение реального объема раствора, часто в качестве меры концентрации используется моляльность (моль/кг растворителя). Осмолярность (осмоль/л) и осмоляльность (осмоль/кг растворителя) выражают концентрацию осмотически активных отдельных частиц в растворе.

Осмотическое давление. Нормальная осмоляльность плазмы крови составляет 280-296 мосмоль \times кг воды. До 96% осмотического давления плазмы крови дают неорганические электролиты, главным образом Na^+ и Cl^- . Осмотическое давление составляет около 7,3 атм. (5600 мм рт. ст. = 745 кПа). Растворы, имеющие такое же осмотическое давление, что и плазма, называют изотоническими.

Осмотическое давление определяет водный обмен между клетками и межклеточным пространством. Гипотония внеклеточной жидкости приводит к клеточному отеку за счет проникновения в клетки воды. Напротив, гипертония вызывает уменьшение объема клеток.

Свойства белков плазмы

Молекулы белков создают коллоидно-осмотическое давление; некоторые белки плазмы выполняют транспортную функцию, другие являются ферментами или гормонами.

Концентрация. Концентрация белков в плазме в норме составляет 65–80 г/л. Так называемый белок плазмы представляет собой смесь из нескольких тысяч разных белков.

Создание коллоидно-осмотического давления. Белки плазмы из-за своей незначительной молярной концентрации слабо влияют на осмотическое давление. Однако они важны для поддержания коллоидно-осмотического давления, или КОД (синоним онкотическое давление), которое определяет водный обмен между плазмой крови и интерстицием.

Белки плазмы из-за своего размера почти не могут проходить через стенки капилляров, в результате чего между плазмой крови и интерстицием возникает большой градиент концентрации белка (КОД 25 мм рт. ст. = $0.7~\mathrm{kHa}$). Снижение концентрации белка в плазме приводит к интерстициальному отеку.

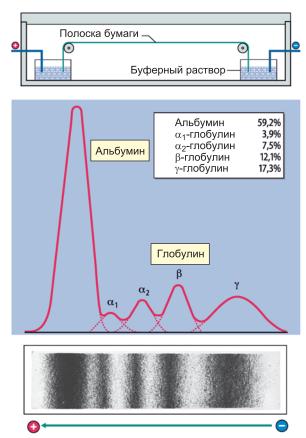
Поэтому растворы — заменители плазмы обычно имеют такое же коллоидно-осмотическое давление, что и плазма крови. В качестве коллоидов в инфузионном растворе (растворе для вливания) используются преимущественно полисахариды (гидроксиацетилкрахмал, декстран) и полипептиды (желатин).

Транспортная функция. Многие низкомолекулярные вещества в плазме связываются с белками неспецифически (например, Ca^{2+} с альбумином) или специфически (Fe^{3+} с трансферрином).

Большая поверхность белковой молекулы с ее многочисленными гидро- и липофильными участ-ками связывания делает их особенно подходящими для транспортной функции. За счет связывания их липофильных групп с водонерастворимыми жироподобными веществами белки служат в качестве солюбилизаторов.

Буферная функция. Белки, будучи **амфолитами**, способны связывать pH-зависимые ионы H^+ и OH^- и участвуют в поддержании pH на постоянном уровне (разд. 35.1).

Пул аминокислот. Примерно в 3 л плазмы взрослого человека растворено около 200 г белков. Они представляют собой важный пул аминокислот.


Защита от потерь крови. Способность плазмы крови к свертыванию служит для защиты организма от потерь крови. В конце цепи определенных реакций, в которой участвует ряд факторов свертывания, ферментативно воздействующих друг на друга, происходит преобразование растворимого фибриногена в нерастворимый фибрин (раздел 23.6).

Защитная функция. Определенные белки плазмы (антитела, белки системы комплемента, белки острой фазы) служат для специфического или неспецифического распознавания и уничтожения патогенов (раздел 24.2).

Фракции белков плазмы

Крупные фракции альбумина, такие как α_1 -, α_2 -, β - и γ -глобулины, различаются по электрофоретической подвижности; печень является главным местом образования белков плазмы, за исключением γ -глобулинов.

Электрофорез. Электрофорез белков плазмы используют в качестве важного средства диагностики, так как многие заболевания вызывают характерные изменения спектра белков (диспротеинемию). С помощью электрофореза можно выделить следующие крупные белковые фракции: альбумин, α₁-, α₂-, β- и γ-глобулины (рис. 23.1). Альбумин, α- и β-глобулины образуются преимущественно в печени, тогда как γ-глобулин продуцируется плазматическими клетками лимфатической системы (разд. 24.2).

Рис. 23.1. Электрофореграмма сыворотки человека. Внизу окрашенная полоса бумаги, вверху — фотометрические кривые, процентные доли отдельных белковых фракций сыворотки и оборудование для электрофореза на бумаге

••• Под электрофорезом понимают разделение растворенных или суспендированных заряженных частиц в электрическом поле постоянного тока. Электролитная природа белковых молекул отчасти основана на способности к ионизации амино- и карбоксильных групп, которые, особенно в боковых цепях, несут электрические заряды, в зависимости от значения рН (—NH₃ или —COO—). Еще важнее имидазольные группы гистидинов, заряд которых также зависит от рН. Скорость электрофоретической миграции белков в основном является функцией приложенного напряжения, величины и формы молекул и их электрического заряда, зависящего от того, насколько изоэлектрическая точка удалена от преобладающего в растворе значения рН. При нейтральной или щелочной реакции раствора белки движутся к аноду с различной скоростью (рис. 23.1).

Альбумин

Молекулы альбумина обеспечивают примерно 80% коллоидно-осмотического давления; кроме того, они служат переносчиками многих органических и неорганических веществ.

Концентрация. Примерно 60% всех белков плазмы составляет альбумин (35–40 г/л; **табл. 23.2**), который продуцируется исключительно в печени. Имея молекулярную массу 69 кДа,

он является одним из самых маленьких в плазме. Благодаря своей высокой концентрации альбумин обеспечивает почти 80% коллоидно-осмотического давления. При многих патологиях концентрация альбумина снижается, особенно при воспалительных заболеваниях, а также при повреждении печени и почек.

Транспортная функция. Большая общая поверхность позволяет молекулам альбумина особенно легко транспортировать вещества в крови. С альбумином связываются катионы (прежде всего Ca²⁺), билирубин, уробилин, жирные кислоты, соли желчных кислот и некоторые посторонние для организма вещества, например пенициллин, сульфонамиды и ртуть. Так, только одна молекула альбумина может связывать 25–50 молекул билирубина.

Глобулины

 α_1 -, α_2 - и β -Глобулины служат специфическими переносчиками гормонов, липидов и минеральных веществ; γ -глобулины — это растворимые антитела.

α₁-Глобулины. К этой фракции относятся различные гликопротеины, которые имеют разветвленные углеводные боковые цепи, состоящие преимущественно из гексоз и гексозамина.

Важными представителями являются (табл. 23.1):

- α-липопротеины, транспортирующие липиды (ЛПВП, липопротеины высокой плотности);
- глобулин, связывающий тироксин;
- глобулин, связывающий витамин B₁₂ (транскобаламин);
- глобулин, связывающий билирубин;
- глобулин, связывающий кортизол (транскортин).

α₂-Глобулины. Представителями этой фракции являются **гаптоглобин**, функция которого состоит в связывании свободного гемоглобина, и обладающий окислительным действием **церулоплазмин**.

β-Глобулины. Представителями этой фракции являются липопротеины низкой плотности (ЛПНП), которые служат растворителями и переносчиками веществ, нерастворимых в воде. Повышенная концентрация ЛПНП провоцирует развитие коронарной болезни сердца и закупорку периферических артерий. С β-фракцией глобулинов при электрофорезе перемещаются также металлосвязывающие белки, в том числе трансферрин, служащий для транспорта железа. Этот металлопротеин может связывать два атома железа (Fe³⁺) на молекулу и представляет собой транспортную форму железа. В норме насыщение сыворотки железом в форме трансферрина составляет только 30% (1 мг $Fe^{3+}/1$ л сыворотки). **С-реактивный** белок (СРБ) интенсивно синтезируется при воспалительных заболеваниях и представляет собой

Таблица 23.2. Белковые фракции плазмы крови человека

Белковые фракции, обнаруженные методом		Средняя концентрация		ММ кДа	IP	Физиологическая роль
электрофореза	иммуноэлектрофореза	г/л	мкмоль/л			
Альбумин	Преальбумин (трансти- реин)	0,3	4,9	61	4,7	Связывание тироксина
	Альбумин	40	579	69	4,9	Коллоидно-осмотическое давление, функция переноса; пул аминокислот
$lpha_1$ -Глобулины	Кислый $lpha_1$ -гликопротеин	0,8	18,2	44	2,7	Продукт деградации тканей?
	α ₁ -Липопротеин (HDL)	3,5	17,5	200	5,1	Транспорт липидов (преимущественно фосфолипидов)
α ₂ -Глобулины	Церулоплазмин	0,3	1,9	160	4,4	Оксидазная активность, связывание меди
	α ₂ -Макроглобулин	2,5	3,1	820	5,4	Ингибирование плазмина и протеазы
	α ₂ -Гаптоглобин	1	11,8	85	4,1	Связывание гемоглобина в плазме
β-Глобулины	Трансферрин	3	33,3	75-80	5,8	Транспорт железа
	β-Липопротеин (ЛПНП)	5,5	0,3-1,8	$3\cdot 10^3 - \\ 2\cdot 10^4$	_	Транспорт липидов (преимущественно холестерина)
	Фибриноген	3	8,8	340	5,8	Свертывание крови
γ-Глобулины (иммуноглобу- лины)	IgG	12	76,9	156	5,8	Антитела против бактериаль- ных антигенов и чужеродного белка
	IgA	2,4	16	150	7,3	
	IgM	1,2	1,3	960		Агглютинины
3.63.6						

 ${
m MM}-{
m молекулярная}$ масса; ${
m IP}-{
m изоэлектрическая}$ точка; ${
m Л\Pi H\Pi}-{
m липопротеины}$ низкой плотности; ${
m Л\Pi B\Pi}-{
m липопротеины}$ высокой плотности.

классический белок острой фазы. Повышенная концентрация СРБ свидетельствует об остром или хроническом инфекционном (бактериальном) или воспалительном процессе.

γ-Глобулины. Эта очень гетерогенная фракция включает крупные антитела, или иммуноглобулины (Ig), которые медленнее всего перемещаются при электрофорезе. По химическому строению различают пять классов Ig. В плазме крови присутствуют главным образом IgG, IgA и IgM (табл. 23.2).

Соотношение альбумин/глобулин

Альбумины и глобулины постоянно синтезируются в организме; при воспалительных заболеваниях увеличивается относительная доля глобулинов, что проявляется в увеличении скорости оседания эритроцитов.

Образование и обновление белков плазмы. При нормальном питании за 24 ч заново образуется

примерно 0,2 г альбумина и 0,2 г глобулина на 1 кг массы тела. Время полужизни альбумина составляет в среднем 19 дней, тогда как для отдельных глобулинов оно очень различно (для α- и β-глобулинов, IgA и IgM — 4–8 дней, для IgG — 20–25 дней). Для глобулинов характерны выраженные колебания в преобладающем типе и количестве, так как они в больших количествах образуются почти при всех, особенно воспалительных, заболеваниях. Общее количество белков плазмы остается, как правило, неизменным, так как увеличение доли глобулинов сопровождается примерно равным уменьшением концентрации альбумина, поэтому снижается лишь соотношение альбумин/глобулин.

Скорость оседания эритроцитов. Эритроциты оседают в несвертывающемся неподвижном образце крови, так как их удельный вес (1,096) больше, чем у плазмы (1,027). Однако они оседают медленно, так как взаимно отталкиваются из-за отрицательного поверхностного заряда. Скорость оседания эритроцитов (СОЭ) составляет у здоровой женщи-

ны 6-11 мм/ч, у здорового мужчины -3-9 мм/ч. СОЭ зависит от состава белков плазмы. Снижение соотношения альбумин/глобулин сопровождается повышением СОЭ.

Повышение СОЭ. СОЭ повышается при бактериальных инфекциях, аутоиммунных заболеваниях (разд. 24.3) и усиленном разрушении тканей (например, при опухолях). Сопутствующие воспалительные процессы ведут к усиленному образованию таких высокомолекулярных глобулинов, как фибриноген, γ-глобулины и белки острой фазы (см. 23.3), которые в качестве так называемых агломеринов вызывают слипание эритроцитов. Агломераты оседают быстрее, чем соответствующее число отдельных клеток.

Определение СОЭ. Определение СОЭ. При использовании стандартного метода Вестергрена из локтевой вены берут 1,6 мл крови 2-миллилитровым шприцом, содержащим 0,4 мл антикоагулянта цитрата натрия. Кровь переносят в градуированную пробирку объемом 200 мл и диаметром 2,5 мм, которую фиксируют в вертикальном положении. Высота супернатанта, свободного от эритроцитов, измеряется через 1 ч (= СОЭ).

На СОЭ влияют различные отрицательные факторы. Снижение гематокрита за счет уменьшения вязкости крови приводит к повышению СОЭ, а увеличение гематокрита — к снижению. Изменения формы эритроцитов, например при серповидно-клеточной анемии, или их неодинаковая форма (пойкилоцитоз, например при злокачественной анемии), затрудняют их слипание, что приводит к снижению СОЭ. Стероидные гормоны (эстроген, глюкокортикоиды) и фармакологические препараты (например, салицилаты) ускоряют СОЭ пока еще неизвестным способом.

Транспортирующие компоненты плазмы

Плазма крови — транспортная среда для питательных веществ, витаминов, микроэлементов и продуктов обмена веществ.

Питательные вещества, витамины и микроэлементы. Среди питательных веществ, переносимых кровью, преобладают липиды. Их концентрация (в норме 4–7 г/л) может после приема жирной пищи подниматься столь высоко (до 20 г/л), что плазма выглядит молочно-белой (липидемия). Примерно 80% липидов присутствует в форме глицеридов, фосфолипидов и сложных эфиров холестерина, связанных с глобулином (липопротеинов), тогда как жирные кислоты, не связанные в сложные эфиры, преимущественно образуют комплексы с альбумином.

Концентрация свободной глюкозы (независимо от ее поглощения и потребления) поддерживается на относительно постоянном уровне 0,8–1,2 г/л (4–7 ммоль/л). Аминокислоты в плазме присутствуют в средней концентрации 0,04 г/л. Витамины (разд. 37.3) и микроэлементы (разд. 37.4) транспортируются в свободной форме или будучи связанными с белком.

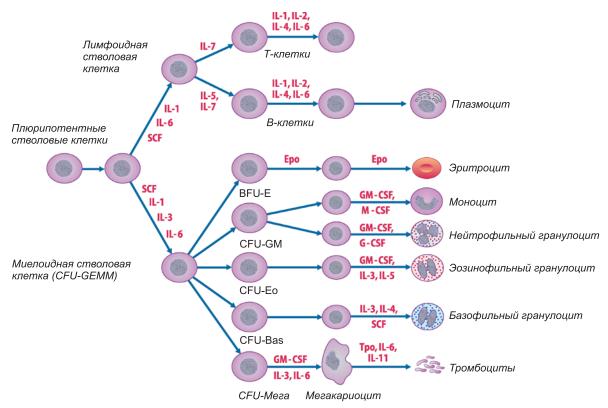
Продукты обмена веществ. Среди промежуточных продуктов по количеству преобладает молочная кислота. Ее концентрация в плазме (в норме 1–2 ммоль/л) повышается при недостатке кислорода и интенсивной мышечной работе. К метаболитам, подлежащим выведению из организма, относятся мочевина, креатинин, мочевая кислота, билирубин и аммиак. Они содержат азот и выводятся с мочой. При нарушении функций почек их концентрация в плазме повышается.

Коротко

Плазма крови

В 1 л плазмы крови человека содержится примерно 900–910 г воды, 65–80 г белков и 20 г низкомолекулярных веществ. Удельный вес плазмы составляет 1,025–1,029. В плазме артериальной крови рН в норме равен 7,4. В плазме венозной крови рН имеет разное значение в зависимости от метаболической активности и сдвинут в сторону кислой реакции. С альбумином связано 80% коллоидно-осмотического давления плазмы. Кроме того, как и ст., ст.

ского давления плазмы. Кроме того, как и α₁-, α₂- и β-глобулины, он служит в качестве переносчика. γ-Глобулины выполняют специфические защитные функции. Изменения соотношения белковых фракций плазмы могут быть выявлены с помощью электрофореза или на основе СОЭ.


Плазма содержит энергетические липиды, углеводы и аминокислоты. При приеме пищи концентрация этих веществ может может резко возрастать. Некоторые вещества (например, молочная кислота) повторно поглощаются из плазмы клетками. Азотсодержащие продукты обмена веществ выводятся из организма почками.

23.3. Эритроциты

Гемопоэз

Все форменные элементы крови развиваются из общих стволовых клеток; гемопоэз регулируется специфическими факторами роста и гормонами.

Стволовые клетки. Клетки крови имеют ограниченный срок жизни, который может составлять несколько часов (нейтрофилы), несколько месяцев (эритроциты) или много лет (лимфоцитарные клетки памяти). Состарившиеся клетки заменяются более молодыми. Процесс образования молодых клеток крови называют гемопоэзом (греч. haima — кровь; poiein — делать). Генеалогическое дерево клеток крови (рис. 23.2) показывает, что они развиваются из плюрипотентных гемопоэтических стволовых клеток. Стволовые клетки обладают способностью к делению и, следовательно, самообновлению (ауторепродукции), что поддерживает их постоянное существование. Помимо это-

Рис. 23.2. Схема генеалогического дерева гематопоэза. На многих этапах пролиферации в костном мозге и лимфатических органах клетки крови возникают как потомки небольшого числа плюрипотентных стволовых клеток (CD34⁺-клетки). Специфические факторы роста (IL — интерлейкин; SCF — фактор стволовых клеток; CSF — колониестимулирующие факторы; Epo — эритропоэтин; Tpo — тромбопоэтин) управляют скоростью пролиферации и дифференцированием предшественника (BFU, burst forming unit — бурстообразующая единица; CFU, colony forming unit — единица, образующая колонии) гранулоцитов (G), моноцитов (M), мегакариоцитов (M, Mega) и эритроцитов (E)

го, они дают более дифференцированных потомков. Среди их прямых потомков различают миелоидные и лимфатические клетки.

Гемопоэтические стволовые клетки в клинической практике часто называют CD34⁺-клетками (от англ. cluster of differentiation, что указывает на наличие у них определенных, обозначаемых числами мембранных белков). С использованием антител против белка CD34 можно накапливать гемопоэтические стволовые клетки для трансплантации стволовых клеток. Стволовые клетки также характеризуются пластичностью, т. е. могут давать начало не только мезодермальным (кровяным) клеткам, но и эндо- и эктодермальным клеткам. При лечении стволовыми клетками делается попытка путем пересадки собственных стволовых клеток (аутологичная трансплантация) восстановить поврежденные ткани (например, в мозге или в сердце).

Клетки-предшественники. За миелоидными и лимфоидными стволовыми клетками следуют более специализированные клетки-предшественники. На ранних стадиях развития они морфологически не дифференцированы — все выглядят похожими на лимфоциты. Клетки-предшественники дают на-

чало колониям более дифференцированных клеток (отсюда название «колониеобразующие единицы», КОЕ). Обозначение **КОЕ-ГЕММ** свидетельствует о том, что из них вырастает клеточная колония, состоящая из многих гранулоцитов (Γ), эритроцитов (Γ), моноцитов (Γ) и мегакариоцитов (Γ).

Гемопоэтические факторы роста. Пролиферация и дифференцировка стволовых клеток и клеток-предшественников регулируются различными факторами роста. Некоторые из них представляют собой настоящие гормоны и вырабатываются в отдаленных от костного мозга органах, таких как почки и печень, другие — цитокины — образуются локально гемопоэтическими клетками, фибробластами и эндотелиальными клетками (см. Приложение, табл. А5). Знание факторов роста существенно важно для клинической практики, так как некоторые — полученные с помощью методов генной инженерии — используются в качестве средств лечения. Среди важнейших средств, назначаемых в качестве лекарственных препаратов, - рекомбининтный человеческий эритропоэтин (рчЭПО) и гранулоцитарный колониестимулирующий фактор (рч Γ -кс Φ).

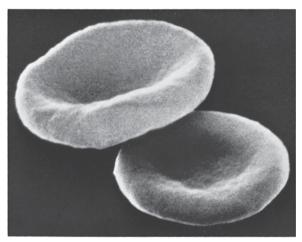
Число, форма и размер эритроцитов

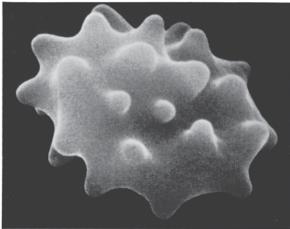
Эритроциты — безъядерные двояковогнутые диски диаметром около 7,5 мкм. В среднем на 1 л крови приходится 4.8×10^{12} эритроцитов у женщин и 5.3×10^{12} у мужчин.

23.1. Трансплантация гемопоэтических стволовых клеток

Пул гемопоэтических стволовых CD34⁺ клеток в костном мозге в норме способен на протяжении всей жизни продуцировать достаточное число клеток-предшественников, из которых образуются различные клетки крови. Эта способность утрачивается, когда пациентам со злокачественными заболеваниями, такими как лейкозы (рак крови) или лимфомы, назначают химические препараты в высоких дозах, возможно, в сочетании с радиотерапией, поскольку при этом уничтожаются стволовые клетки.

Их потеря может быть компенсирована внутривенным введением новых стволовых клеток, которые заселяют в костный мозг (homing) и регенерируют гемопоэтическую ткань. Трансплантация может осуществляться аутологично, когда в распоряжении имеются здоровые криоконсервированные стволовые клетки самого пациента. При аллогенной трансплантации клетки берут от другого человека, который должен иметь сходные НLА-маркеры (человеческие лейкоцитарные антигены), чтобы предотвратить реакцию иммунокомпетентных клеток донора (реакция трансплантата против хозяина) на здоровые ткани реципиента. Однако интересно, что трансплантированные чужеродные лейкоциты также могут разрушать лейкемические клетки реципиента.


Ранее красный костный мозг, полученный из тазовых костей, трансплантировали (ТКМ) или использовали для получения стволовых клеток. В прежнее время предпочтение отдавали трансплантации стволовых клеток периферической крови (ТПСК), которая менее болезненна для донора. Поскольку в норме в крови циркулирует мало стволовых клеток, за несколько дней до взятия материала донору вводят Г-КСФ, что стимулирует выход стволовых клеток из костного мозга (мобилизацию стволовых клеток). Стволовые клетки выделяют из крови донора в системе рециркуляции путем многочасового процесса (аферез). Третий вариант, который особенно подходит для детей, — это трансплантация стволовых клеток из пуповинной крови новорожденного.


Количество эритроцитов. Большинство форменных элементов крови — это эритроциты (по объему > 99%), которых в 1 л крови у женщин в среднем насчитывается 4.8×10^{12} , а у мужчин 5.3×10^{12} (табл. 23.2). Наряду с водой главным компонентом

эритроцитов является красный пигмент крови гемоглобин, связывающий O_2 (разд. 34.2).

За детские годы концентрация эритроцитов изменяется. У новорожденных она высокая $(5.5 \times 10^{12}/\pi)$ вследствие внутриутробной гипоксии (разд. 34.5), кроме того, при рождении кровь проходит через плаценту в кровеносную систему ребенка и при этом сильно обезвоживается. В последующие месяцы эритроциты плода погибают, поскольку они чувствительны к окислительному стрессу из-за поступающего от легких кислорода. Формирование эритроцитов не поспевает за гибелью фетальных эритроцитов, вследствие чего имеет место снижение их концентрации на 3-м месяце жизни примерно до $3.5 \times 10^{12}/л$. У детей дошкольного и школьного возраста отмечается несколько меньшая концентрация эритроцитов, чем у взрослых женщин.

Форма. Эритроциты человека — безъядерные двояковогнутые диски, средний диаметр которых составляет 7,5 мкм, а максимальная толщина (с края) 2 мкм (рис. 23.3). По сравнению с шаро-

Рис. 23.3. Формы эритроцитов. *Вверху*: двояковогнутая дисковидная форма нормальных эритроцитов. *Внизу*: шиповатая форма (как плод дурмана, эхиноцит), которая встречается, в частности, при внесении эритроцитов в гипертонический солевой раствор (По данным: Bessis, 1974.)

видной уплощенная форма увеличивает площадь поверхности. Это облегчает газообмен при дыхании (разд. 34.1), так как диффузионная поверхность большая, а диффузионный путь короткий. Кроме того, плоские гибкие эритроциты могут при прохождении через узкие и изогнутые участки капилляров легко менять свою форму. Гибкость эритроцитов уменьшается с возрастом. Она также меньше у аномально деформированных эритроцитов, например, у эллиптоцитов, сфероцитов (шаровидных) или серповидных клеток (см. 23.3), поэтому они часто застревают в красной пульпе селезенки, где затем деградируют.

Размер. Средний объем эритроцитов (MCV, *mean corpuscular volume*) составляет 85 фемтолитров (нормоцит). Аномально крупные эритроциты называют **макроцитами** (например, при злокачественной анемии), а аномально мелкие — **микроцитами** (например, при недостатке железа). При одновременном наличии макро- и микроцитов говорят об **анизоцитозе**. Если эритроциты обладают аномальной формой, то имеет место **пойкилоцитоз**

Таблица 23.3. Показатели крови у взрослого человека

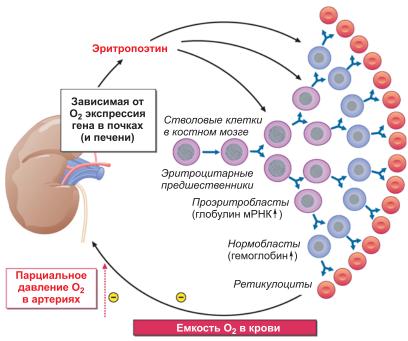
Параметры		Нормальное значение (пределы)	Еди- ница*
Эритроциты	Ŷ	4,8 (4,0-5,2)	$10^{12}/\pi$
	♂	5,3 (4,6-5,9)	$10^{12}/\pi$
Ретикулоциты		0,07 (0,02-0,13)	$10^{12}/\pi$
Гематокрит	2	0,42 (0,37-0,47)	
	o'	0,47 (0,40-0,54)	
Гемоглобин	9	140 (120–160)	г/л
	o'	160 (140–180)	г/л
MCV		85 (80–96)	
MCH		30 (27–34)	
MCHC		340 (300-360)	
Лейкоциты		7 (4–10)	
Гранулоциты		4,4 (2,5–7,5)	$10^9/\pi$
— нейтро- фильные		4,2 (2,5–7,5)	$10^9/\pi$
— эозино-фильные		0,2 (0,04-0,4)	$10^{9}/\pi$
— базофиль- ные		0,04 (0,01-0,1)	$10^{9}/\pi$
Моноциты		0,5 (0,2-0,8)	$10^{9}/\pi$
Лимфоциты		2,2 (1,5–3,5)	$10^{9}/\pi$
Тромбоциты		250 (150-400)	$10^{9}/\pi$

^{*} В клинической практике: $10^{12} = T$ — тера, $10^9 = \Gamma$ — гига

(например, при злокачественной анемии или талассемии).

Картина красной крови. Наряду с гематокритом, концентрацией гемоглобина, числом кровяных клеток и MCV, к основополагающим параметрам крови (табл. 23.3) относятся среднее содержание гемоглобина в эритроцитах (MCH, mean corpuscular hemoglobin) и средняя концентрация гемоглобина в эритроцитах (MCHC, mean corpuscular hemoglobin concentration). МСН показывает рассчитанную среднюю массу гемоглобина в отдельном эритроците (30 пг — нормохромная, > 34 пг — гиперхромная, < 27 пг — гипохромная).

Значение МСНС даже у больных редко отклоняется от нормы (на $300-360 \text{ г} \times 1 \text{ л}^{-1}$).


••• Подсчет эритроцитов. Определение числа эритроцитов с помощью микроскопа и счетной камеры в настоящее время практически не производится. Вместо этого для подсчета клеток используют автоматические анализаторы. В этом случае концентрация эритроцитов в разведенной суспензии определяется либо по степени рассеивания проходящего лазерного луча (проточная цитометрия), либо по изменению электрической проводимости при прохождении клеток через тонкую трубочку. Анализаторы рассчитывают гематокрит, МСV, МСН и МСНС.

Эритропоэз

Формирование эритроцитов контролируется гормоном эритропоэтином, основным источником которого служат почки; экспрессия гена эритропоэтина усиливается при тканевой гипоксии.

Жизненный цикл эритроцитов. Эритроциты образуются в гемопоэтических тканях, т. е. в желточном пузыре (до 6-й недели после зачатия) у эмбриона, у плода — в печени (с 6-й недели и до рождения) и селезенке (с 15-й недели и до рождения) и, наконец (с 18-й недели), в красном костном мозге плоских и коротких костей (почти исключительно со 2-го месяца после рождения). Среди предшественников эритроцитов различают клетки нескольких стадий дифференцировки и созревания (в том числе КОЭ-Э и эритробласты) от миелоидных стволовых клеток до молодых безъядерных эритроцитов, которые выходят из костного мозга как ретикулоциты (рис. 23.2). Эритроциты циркулируют в крови 100-120 дней. Затем они разрушаются фагоцитирующими клетками в костном мозге, печени и селезенке. Примерно 0.8% из 2.5×10^{13} эритроцитов взрослого человека обновляются за 24 ч. Это означает, что образование эритроцитов (эритропоэз) происходит со скоростью 1.6×10^8 эритроцитов в минуту.

Регуляция. После кровопотери или при заболеваниях, сопровождающихся снижением продолжительности жизни эритроцитов, скорость эритропоэза может увеличиваться. Эффективным стимулом

Рис. 23.4. Регуляция эритропоэза. Синтез гормона эритропоэтина в почках зависит от снабжения O_2 (по принципу обратной связи) и стимулирует рост предшественников эритроцитов в костном мозге, что приводит к повышению концентрации эритроцитов в крови (и следовательно, кислородной емкости крови)

при этом является снижение парциального давления O_2 в ткани (тканевая гипоксия). В таких условиях в плазме можно обнаружить эритропоэтин (Еро) — гликопротеиновый гормон (30 кДа; 165 аминокислот, 40% углеводов), который специфически усиливает эритропоэз.

Эритропоэтин образуется прежде всего в **поч- ках**, а именно в перитубулярных фибробластоподобных клетках. При недостатке O₂, например, в результате кровопотери или при нахождении на большой высоте над уровнем моря, увеличивается образование эритропоэтина (**рис. 23.4**). В небольших количествах эритропоэтин образуется также в других органах (печени, головном мозге). В **эмбриональный период** основным местом синтеза этого гормона является **печень**.

HIF-2. Экспрессия гена эритропоэтина стимулируется индуцируемым гипоксией фактором транскрипции 2 (HIF-2), который стабилизируется недостатком O_2 . HIF-2 и его изоформа HIF-1 активируют множество генов, продукты трансляции которых защищают организм от недостатка O_2 и глюкозы (в дополнение к эритропоэтину: фактор роста эндотелия сосудов VEGF, различные гликолитические ферменты и мембранные транспортеры глюкозы).

Действие эритропоэтина. Эритропоэтин связывается со специфическими гомодимерными трансмембранными рецепторами (Epo-R) на клетках-мишенях. За счет связывания эритропоэтина с Epo-R активируются внутриклеточные тирозинкиназы, которые стимулируют сигнальные

молекулы, предотвращающие запрограммированную гибель (апоптоз) предшественников эритроцитов в костном мозге (рис. 23.4). Клетки вступают на путь пролиферации и дифференцировки, за счет чего увеличивается число эритробластов, синтезирующих гемоглобин. Наконец, нормобласты выталкивают свое ядро в окружающее межклеточное пространство и созревают, превращаясь при этом в ретикулоциты (см. ниже). Увеличение концентрации эритропоэтина через 3—4 дня приводит к ретикулоцитозу. В его отсутствие эритроциты не могут образовываться.

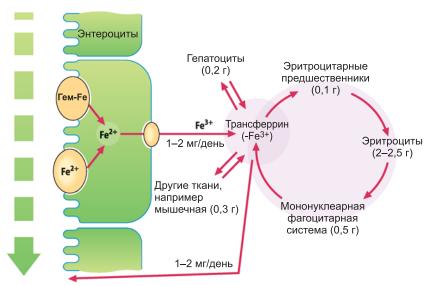
Другие гормоны. Гормоны щитовидной железы (T_3, T_4) стимулируют продукцию эритропоэтина, андрогенов и соматомединов (инсулиноподобных факторов роста, *insulin like growth factors*) в костном мозге. Зависимые от пола различия в гематокрите, массе эритроцитов и концентрации гемоглобина в крови мужчин и женщин (см. выше) связаны прежде всего с усилением эритропоэза **андрогенами**.

Ретикулоциты. С помощью прижизненного окрашивания (например, бриллиантовым крезиловым синим или метиленовым синим) можно показать наличие в ретикулоцитах гранулярных или **ретикулярных структур** (substantia granuloreticulo-filamentosa), состоящих из рибосомной РНК и органелл. Ретикулоциты могут быть крупнее, чем эритроциты. В течение 1–2 дней ретикулоциты теряют свою ретикулярную структуру и созревают в свободные от органелл эритроциты. Число и концентрация ретикулоцитов в крови дают диагностическую информацию об активности эритропоэза.

В норме доля ретикулоцитов составляет 1-1,5% от красных кровяных телец (абсолютные значения: $20-130\times10^9$ на 1 л). Подавление эритропоэза ведет к уменьшению числа ретикулоцитов и стимулирует увеличение их размера. В экстремальных случаях доля ретикулоцитов может увеличиваться до 40% от содержания красных телец в крови.

Анемия

Недостаток железа вызывает гипохромную микроцитарную анемию, недостаток витамина В₁₂ или фолиевой кислоты — гипохромную макроцитарную анемию; анемии также возникают в результате повышенного гемолиза или первичной недостаточности костного мозга.


Содержание железа. Из 3-4 г находящегося в организме железа примерно 70% входят в состав гемоглобина (разд. 34.2). Железо, высвобождающееся из гема при разрушении старых эритроцитов, связывается в плазме крови гликопротеином трансферрином (общее количество примерно 3 мг), транспортируется в костный мозг и повторно используется для синтеза гемоглобина. В норме насыщение плазмы трансферрином у взрослого человека составляет 20-30%. Предшественники эритроцитов (и других клеток) обладают специфическими рецепторами к трансферрину (TfR), с помощью которых они поглощают трансферрин вместе с Fe³⁺ путем эндоцитоза. После отщепления Fe³⁺ комплекс трансферрин–TfR транспортируется назад в мембрану (рециклирование) и свободный от железа трансферрин (апотрансферрин) выходит в межклеточное пространство.

Макрофаги и гепатоциты содержат около 0,7 г железа, связанного с ферритином (до 4500 Fe^{3+} на молекулу ферритина). В норме организм теряет только 1-2 мг железа в день, которые должны быть возмещены железом из пищи (рис. 23.5). В среднем в тонком кишечнике (прежде всего в двенадцатиперстной кишке) всасывается около 1,2 мг негемового железа и 0,4 мг гемового железа. Поступление железа из энтероцитов кишечника и макрофагов осуществляется за счет транспортного белка ферропортина. Активность ферропортина подавляется гормоном гепсидином, продуцируемым гепатоцитами. Гепсидин представляет собой белок острой фазы, состоящий из 25 аминокислот, который присоединяется к ферропортину, после чего последний интернализуется и протеолитически деградирует.

Анемия, связанная с недостатком железа. Дефицит железа широко распространен (примерно у 40% населения) в развивающихся странах и является основной причиной анемий и в индустриально-развитых странах. При дефиците железа образуются мелкие эритроциты с пониженной массой гемоглобина (гипохромная микроцитарная анемия).

Недостаток железа могут вызывать:

- недостаточное содержание элемента в пище (особенно часто у грудных детей);
- сниженное поглощение железа из пищеварительного тракта (например, при синдроме мальабсорбции);
- **хроническая кровопотеря** (например, при интенсивных менструальных кровотечениях, а также при язвах или злокачественных опухолях желудочно-кишечного тракта);

Рис. 23.5. Круговорот железа. Около 70% всего железа содержится в гемоглобине, остальные 30%- в других гемсодержащих белках или же связаны с ферритином в гепатоцитах и макрофагах. В плазме крови $\mathrm{Fe^{3^+}}$ переносится трансферрином. Ежедневно 1-2 мг железа с помощью специальных белков-переносчиков поглощается в виде $\mathrm{Fe^{2^+}}$ или гема в двенадцатиперстной кишке; таким образом восполняется утрата клетками железа

 функционально в результате воспалений с повышенным образованием гепсидина (анемия хронических заболеваний).

Мегалобластические анемии. Отличительная особенность этих анемий — наличие аномально крупных эритроцитов (мегалоцитов, или макроцитов) и их незрелых предшественников (мегалобластов) в крови или в костном мозге. Причина аномалии — **недостаток витамина B_{12}** (пернициозная анемия) или фолиевой кислоты в пище или нарушение их усвоения. Оба витамина необходимы для пролиферации клеток (и синтеза ДНК).

Почечная анемия. Недостаток эритропоэтина при хронической почечной недостаточности приводит при отсутствии лечения к нормохромной нормоцитарной анемии. Однако с последней можно успешно бороться путем лечения рекомбинантным эритропоэтином (рчЭПО).

Апластическая анемия. Апластические анемии и панцитопении характеризуются тем, что, несмотря на наличие всех веществ, необходимых для кроветворения, гемопоэз в костном мозге снижен. При апластических анемиях происходит уменьшение числа только эритроцитов, при панцитопениях — всех клеток крови, образующихся в костном мозге. Причинами панцитопений могут быть повреждения костного мозга ионизирующими излучениями (при радиотерапии), клеточные яды (цитостатики, бензол и т. д.) или замещение здоровых тканей опухолевыми.

Гемолитические анемии. Болезни, при которых происходит интенсивное разрушение эритроцитов (гемолиз), могут вызывать гемолитическую анемию. Эритроциты могут лопаться (аналогично некрозу клеток, содержащих ядра) или гибнуть (аналогично апоптозу клеток, содержащих ядра). При программируемой гибели эритроциты сморщиваются и экспонируют фосфатидилсерин в своей клеточной мембране (эриптоз). Клетки, которые несут фосфатидилсерин на своей мембране, распознаются макрофагами, подвергаются фагоцитозу и разрушаются. К гемолизу и/или эриптозу приводят также наследственные заболевания: шаровидно-клеточная анемия, серповидно-клеточная анемия и талассемии, а также малярия, сепсис, отравления (в том числе свинцом, медью), аутоиммунные реакции против эритроцитов (разд. 24.3) и несовместимость резус-факторов при фетальном эритробластозе.

23.2. Анемии

Патология. Анемия — симптом заболеваний различной природы, а не самостоятельное заболевание. Это понятие относится к снижению (общего) объема циркулирующих эритроцитов (малокровие), в клинической практике оно используется для обозначения пониженной концентрации гемоглобина

в крови. При анемии может уменьшаться как число эритроцитов, так и содержание гемоглобина в отдельных эритроцитах.

Формы. Анемии — следствие врожденной аномалии, недостатка витаминов или железа, недостаточной продукции эритропоэтина, отравления, облучения или воспалительного или неопластического заболевания. Нарушение образования эритроцитов характеризуется низким уровнем ретикулоцитов ($<20\times10^9/\pi$). Гемолитические анемии отличаются повышенным числом ретикулоцитов и измененными параметрами оборота гемоглобина (непрямой билирубин \uparrow , лактатдегидрогеназа сыворотки \uparrow , гаптоглобин \downarrow).

Симптомы. Симптомы хронической анемии обусловлены сниженным снабжением тканей O_2 . Пациенты страдают от утомляемости, одышки, тахикардии, головной боли и головокружений, у них снижена работоспособность. Кроме того, у пациентов наблюдается бледность кожи и слизистых оболочек. Другие симптомы могут быть связаны с причинами анемии (например, жжение на языке при недостатке витамина B_{12} , желтуха при гемолизе).

После **острого кровотечения** концентрация гемоглобина в крови сначала остается нормальной. Клинические симптомы при этом определяются прежде всего гиповолемией, в итоге может наступить циркуляторный шок.

Метаболическая активность эритроцитов

Зрелые безъядерные эритроциты получают АТФ анаэробным путем в процессе гликолиза; НАД-Н и НАДФ-Н действуют как антиоксиданты.

Анаэробный синтез АТФ. Поскольку эритроциты не имеют митохондрий, они зависимы от анаэробного расщепления глюкозы, которую получают через транспортер глюкозы 1 (GLUT 1). Наряду с АТФ, необходимым для активного транспорта ионов через мембрану эритроцитов, в ходе гликолиза образуются такие восстановители как НАД-Н (восстановленный никотинамидадениндинуклеотид) и — в пентозофосфатном цикле — НАДФ-Н (восстановленный никотинамидадениндинуклеотидфосфат).

Востановители. НАД-Н используется, помимо прочего, для восстановления постоянно образующегося из-за самоокисления ($Fe^{2+} \rightarrow Fe^{3+}$) **метгемоглобина** (гемиглобина) до гемоглобина, способного транспортировать O_2 . НАДФ-Н используется для восстановления присутствующего в эритроцитах глутатиона. Легко окисляемый **глутатион**, в свою очередь, защищает от окисления внутриклеточные белки с SH-группами, в частности молекулы гемоглобина и белки мембраны эритроцитов.

Недостаток Г6Ф-ДГ. Недостаток в эритроцитах глюкозо-6-фосфатдегидрогеназы (Г6Ф-ДГ) — наиболее частый наследственный ферментативный дефект. Он сцеплен с X-хромосомой. Заболевание проявляется в периодических эпизодах гемолиза, которые могут быть вызваны инфекциями или приемом определенных лекарств (сульфонамидов) и питательных веществ (конских бобов).

Биофизические свойства

Эритроциты могут изменять свою форму и объем в зависимости от осмотических условий.

Проницаемость. Мембрана эритроцитов представляет собой эластичную молекулярную мозаику, состоящую из белков, глико- и липопротеидов и липидных участков. Проницаемость мембраны эритроцитов (толщиной около 10 нм) для анионов примерно в 1 млн раз больше, чем для катионов.

Мембранные белки. Эритроциты проходят по капиллярам, ширина просветов которых меньше, чем их собственный диаметр (7,5 мкм). С внутренней стороной мембраны эритроцитов расположены структурные белки, которые обеспечивают им способность к легкой деформации. Особенно важными структурными белками являются спектрин, состоящий из двух длинных параллельно расположенных скрученныз гибких цепей и способный образовывать олигомеры, актин и протеин 4.1. Сеть из этих белков прикрепляется к мембране или к специальным белкам-мостикам, таким как протеин 4.2, или анкирин, который соединяет спектрин с белком полосы 3 (Cl⁻/HCO₃-обменник) на мембране эритроцитов. Генетически обусловленный дефект одного из этих белков может приводить к внутри- или внесосудистому гемолизу, например при наследственном эллипсоцитозе или сфероцитозе (круглоклеточной анемии).

Осмотические свойства. В гипертонической среде эритроциты теряют воду. За счет образования складок мембран эритроциты приобретают формы, напоминающие шиповатые плоды дурмана (рис. 23.3). В гипотонической среде эритроциты, напротив, набухают и их форма приближается к шаровидной (сфероциты). В итоге мембрана разрывается и гемоглобин высвобождается (осмотический гемолиз). Примерно 50% эритроцитов здорового человека гемолизируют в гипотоническом водном растворе при концентрации NaCl 4,3 г/л. При определенных дефектах мембраны эритроцитов или синтеза гемоглобина осмотическая устойчивость снижается и может развиться гемолитическая анемия.

23.3. Серповидно-клеточная анемия

Причины и патология. Причина серповидно-клеточной анемии — замена глутамата в 6-м положении β -цепи гемоглобина на валин. У гомозиготных носителей гена серповидно-клеточной анемии до 50%

нормального гемоглобина A (HbA), который представляет собой тетрамерную молекулу, имеющую по две α - и две β -глобулиновые цепочки, замещены на гемоглобин S (HbS). Растворимость дезоксигенированного HbS составляет лишь около 4% от растворимости HbA. При отдаче O_2 (дезоксигенации) гемоглобином, присутствующим в эритроцитах в виде концентрированного раствора, HbS образует волокнистый осадок, который деформирует эритроциты, превращая их в серповидные клетки.

Последствия. Из-за плохой способности к изменению формы серповидные эритроциты могут закупоривать мелкие сосуды. Следствиями могут быть, в частности, почечная недостаточность, инфаркт миокарда и т. д. Пациенты страдают прежде всего от кислородной недостаточности (гипоксии, например при низком давлении O_2 в самолете).

••• Гемолизирующее действие некоторых видов мыла, сапонина и синтетических моющих средств основывается на снижении поверхностного натяжения между водной и липидной фазами мембраны. Липиды эмульгируются и выходят из мембраны. Из-за брешей в мембранах клетки подвергаются гемолизу. Органические растворители, такие как хлороформ, эфир и другие, также вызывают выход липидных компонентов из мембраны и тем самым гемолиз.

Коротко

Эритроциты

Большая часть форменных элементов крови представлена эритроцитами. Эти двояковогнутые диски содержат высококонцентрированный раствор гемоглобина, необходимый для транспорта О2, но не содержат органелл. Благодаря сложной сети ассоциированных с мембраной белков эритроциты могут деформироваться и проходить через узкие капилляры. Они циркулируют в крови 100-120 дней, после чего подвергаются фагоцитозу. Стареющие эритроциты постепенно заменяются молодыми, которые созревают как потомки гемопоэтических стволовых клеток и клеток-предшественников в эритропоэтических тканях. Для пролиферации и дифференцировки эритроцитарных предшественников необходим эритропоэтин — гликопротеиновый гормон, образующийся преимущественно в почках.

Картина красной крови включает сведения о концентрации гемоглобина, эритроцитов и ретикулоцитов в крови, а также о гематокрите. Для дифференциальной диагностики анемий достаточно знать средний объем (MCV) и массу гемоглобина (MCH) в отдельных эритроцитах.

Анемии возникают при недостаточном образовании или избыточной потере эритроцитов. Первое имеет место при недостатке железа, витамина B_{12} , фолиевой кислоты или эритропоэтина (при хронической почечной недостаточности).

Химиотерапия вызывает гипопролиферативную анемию. При кровотечениях различают острые и хронические анемии. Гемолитические анемии могут иметь наследственный характер (ферментативные или мембранные дефекты).

[...]

Р. Ф. ШМИДТ, Ф. ЛАНГ, М. ХЕКМАНН

ФИЗИОЛОГИЯ ЧЕЛОВЕКА

с основами патофизиологии

Это фундаментальное руководство, знакомое не одному поколению читателей, написано целым рядом авторитетных ученых. Оно переиздавалось более 30 раз на немецком и английском языках.

В настоящем издании современные сведения по физиологии человека изложены в доступной форме с множеством понятных цветных иллюстраций. Базовая информация по предмету сопровождается описанием клинических случаев и патофизиологических процессов, лежащих в основе различных заболеваний человека.

На протяжении многих десятилетий данный учебник служит почетной цели – готовить студентов-медиков к их ответственной работе.

Для студентов биологических и медицинских специальностей, а также физиологов и врачей. Книга будет полезна также изучающим биофизику, биохимию, фармакологию и психологию.

На русском языке выходит в двух томах.

Краткое содержание 2-го тома

- Кровь и иммунная защита
- Сердце и кровеносная система
- Регуляция внутренней среды организма
- Процесс дыхания
- Обмен веществ, работа, возраст