Ваш любимый книжный интернет-магазин
Ваш город: Москва

ВНИМАНИЕ!
Заказы, сделанные в период с 25.11.22 по 04.12.22, будут обработаны и отгружены в течении нескольких дней после 4-го декабря. В указанный период отгрузок не будет. Просьба при оформлении заказа учитывать это обстоятельство в своих планах. После 4-го декабря вернемся к нормальному режиму отгрузки. 
Ранее сделанные заказы выполняются в штатном режиме.

Ваше местоположение – Москва
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы
Читайте отзывы покупателей и оценивайте качество магазина на Яндекс.Маркете

Методы машинного обучения в Data Mining пакета STATISTICA

В наличии
Местонахождение: МоскваСостояние экземпляра: новый
Бумажная
версия
ISBN: 978-5-9912-0975-5
Год издания: 2022
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 260
Издательство: М.: Горячая линия – Телеком
Вид издания: Учебное пособие
Для кого: Для вузов
Цена: 638 руб.
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 647530
Способы доставки в город Москва *
комплектация (срок до отгрузки) не более 4 рабочих дней
Возможность
оплаты при
получении заказа
Самовывоз из Москвы (собственные пункты самовывоза) Нет, только предоплата
Самовывоз из города Москва (пункты самовывоза партнёра CDEK)Есть, наличными и банковской картой
Курьерская доставка CDEK из города МоскваЕсть, наличными и банковской картой
Доставка Почтой России из города МоскваЕсть, наличными
Экспресс-доставка EMS из города МоскваНет, только предоплата
      Аннотация: В настоящее время, благодаря совершенствованию технологий сбора и хранения данных в различных областях человеческой деятельности накоплены огромные массивы разнородных данных – количественных, качественных, текстовых, ограниченного и неограниченного объема. Поэтому в дополнении к методам многомерного анализа, как правило, основанных на парадигме среднего, появились современные технологии анализа данных, в частности Data Mining – добычи данных, или интеллектуального анализа данных. Методы машинного обучения Data Mining являются составной частью искусственного интеллекта (ИИ), проникающего практически во все сферы человеческой деятельности. Но ИИ – это программный продукт, разработанный человеком, и эффективность его работы зависит в том, числе и от того насколько правильно применены методы машинного обучения.
      
      В издании освещены методы машинного обучения: деревья решений – общие деревья классификации и регрессии, CHAD-модели, интерактивные деревья, стохастический градиентный бустинг, случайные леса регрессии и классификации; процедуры обучения – методы опорных векторов, к-ближайших соседей, наивный байесовский классификатор; автоматизированные нейронные сети и программа DATA MINER. Книга написана на основе курсов, читаемых автором в Кубанском государственном университете. При описании методов использовались версии пакета STATISTICA 10, 13 (Tibco, USA).
      
      Для студентов, изучающих математические и технические дисциплины, а также аспирантов, преподавателей вузов, специалистов в области Data Science, научных работников различных направлений, занимающихся анализом данных. Простая и доступная для широкого круга читателей форма изложения делает возможным использование пособия для самостоятельного изучения методов машинного обучения, реализованных в Data Mining пакета STATISTICA.