	Введение	
1.	Общие сведения о радиолокации	
	1.1. Принципы радиолокации	
	1.1.1. Определения	
	1.1.2. Принципы и физические основы радиолокации.	
	Поляризация сигналов	1
	1.1.3. Координаты целей, измеряемые РЛС	1
	1.2. Краткий обзор истории и применения радиолокации	2
	1.3. Применения и виды радиолокации	2
	1.4. Обобщенная структурная схема активной РЛС	2
	1.5. Рандомизация обработки радиолокационных сигналов.	2
	1.5.1. Понятие о рандомизированной обработке	2
	1.5.2. Примеры использования грубых отчетов сигналов	
	и их рандомизации по методу Монте-Карло	2
2.	Вторичное излучение целей и эффективная площадь	
	рассеяния	
	2.1. Основные понятия и определения	
	2.2. ЭПР целей, размеры которых значительно меньше дли-	
	ны волны (релеевская область)	
	2.3. ЭПР целей, размеры которых одного порядка с длиной	
	волны (резонансная область)	4
	2.4. ЭПР сложных целей, больших по сравнению с длиной	
	волны (высокочастотная область)	4
	2.4.1. Физические причины флуктуаций ЭПР	4
	2.4.2. Модели флуктуаций амплитуды эхо-сигналов и ЭПР	4
	2.4.3. Модель релеевских флуктуаций амплитуды	4
	2.4.4. Диаграмма вторичного излучения (рассеяния)	4
	гложной цели usanyчения (рассеяния)	4
	2.4.5. Корреляция флуктуаций амплитуд эхо-сигналов и	-
	ЭПР	4
3.	Параметры, характеристики и критерии эффектив-	
	ности РЛС	Ę
	3.1. Тактические и технические характеристики РЛС	ļ
	3.1.1. Дальность действия и зона действия РЛС	ŗ

	3.1.2. Характеристики обнаружения	55
	3.1.3. Чувствительность приемника РЛС	56
	3.1.4. Основное уравнение радиолокации	57
	3.1.5. Уравнение радиолокации для импульсного радара	58
	3.1.6. Точность и разрешающая способность РЛС	59
	3.2. Поиск целей	70
	3.2.1. Методы устранения координатной и доплеровской	
	неопределенности	70
	3.2.2. Дискретизация пространства	74
	3.3. Общие рекомендации по выбору основных TTX РЛС	77
	3.3.1. Выбор диапазона	77
	3.3.2. Выбор составляющих энергопотенциала РЛС	79
	3.3.3. Выбор типа сигнала	80
	3.3.4. Выбор чувствительности и полосы пропускания ра-	
	диоприемного устройства	80
	3.3.5. Выбор типа выходного устройства	81
	3.4. Классификация критериев эффективности	81
	3.4.1. Информационные критерии	82
	3.4.2. Мощностные (энергетические) критерии	84
	3.4.3. Точностные критерии	86
	3.4.4. Вероятностные критерии	86
	3.4.5. Оперативно-тактические критерии	86
	3.4.6. Экономические критерии	86
	3.4.7. Взаимосвязь критериев эффективности	87
4.	Основы теории обнаружения сигналов	88
	4.1. Постановка задачи обнаружения и условия ее решения	88
	4.1.1. Уточнение понятий	88
	4.1.2. Теория обнаружения	89
	4.1.3. Некоторые сведения из истории	90
	4.2. Возможные решения и критерии качества обнаружения	93
	4.2.1. Комбинации индикаторных переменных (ситуации)	93
	4.2.2. Понятие среднего риска	94
	4.2.3. Адаптивный обзор	95
	4.2.4. Понятие оптимального обнаружителя	96
	4.2.5. Оптимальный последовательный обнаружитель	99
	4.3. Модели сигнала и шума	101
	4.3.1. Модели сигнала	101
	4.3.2. Модель шума	102

4.4. Общий подход к задаче обнаружения сигнала (структу-	
ра оптимальных обнаружителей)	103
4.4.1. Вероятность ложных тревог и вероятность прави-	
льного обнаружения	103
4.4.2. Отношение правдоподобия	104
4.4.3. Оптимальный приемник	105
4.5. Оптимальное обнаружение детерминированных сиг-	
налов	106
4.5.1. Функционал отношения правдоподобия	106
4.5.2. Достаточные статистики. Физический смысл кор-	
реляционного интеграла	108
4.5.3. Анализ качества оптимального обнаружителя	109
4.5.4. Комплексная форма функционала правдоподобия	
и оптимального алгоритма	113
4.5.5. Алгоритмы обнаружения в частотной области	114
4.6. Оптимальное обнаружение квазидетерминированных	
сигналов	115
4.6.1. Детерминированные сигналы	115
4.6.2. Обнаружение сигналов со случайными неинформа-	
тивными параметрами	116
4.6.3. Оптимальные алгоритмы обнаружения сигналов со	
случайной начальной фазой	117
4.6.4. Оптимальные алгоритмы обнаружения сигналов со	
случайными начальной фазой и эффективным зна-	
чением	119
4.6.5. Показатели качества синтезированного оптималь-	
ного обнаружителя сигналов со случайной началь-	101
ной фазой	121
4.6.6. Распределение вероятностей суммы сигнала и шу- ма. Вероятность правильного обнаружения	123
ма. Бероятность правильного обнаружения 4.6.7. Показатели качества синтезированного оптималь-	123
ного обнаружителя сигналов со случайной фазой и	
эффективным значением	125
4.7. Согласованная фильтрация — основная операция опти-	120
мального обнаружения сигнала на фоне белого шума	
при неизвестной дальности цели	130
4.7.1. Многоканальный коррелятор для вычисления кор-	
реляционных интегралов при неизвестной дально-	
сти цели	130
4.7.2. Согласованный фильтр. Частотная характеристи-	
ка	130

	4.7.3. Согласованный фильтр. Импульсная характерис-	
	тика	133
	4.7.4. Отношение сигнал/шум на выходе согласованного	
	фильтра	134
	4.7.5. Форма сигнала на выходе согласованного фильтра	135
	4.8. Обобщение задачи оптимального обнаружения для слу-	
	чая рандомизации условий радиоприема	136
	4.8.1. Рандомизация параметров сигналов	136
	4.8.2. Рандомизация условий радиоприема	137
	4.9. Основные выводы по разделу 4	138
5.	Основные положения теории цифровой стохастичес-	
	кой обработки радиолокационных сигналов при ис-	
	пользовании «грубых статистик»	141
	5.1. Теория пространственно-временного обнаружения ради-	
	олокационных сигналов, учитывающая эффекты диск-	
	ретизации и квантования	142
	5.1.1. Обнаружение цели на фоне шума и помех	142
	5.1.2. Базовая теория обнаружения, учитывающая эф-	
	фекты дискретизации и квантования сигналов	144
	5.1.3. Использование различий сигналов и помех	148
	5.2. Расширение границ применимости теории пространст-	
	венно-временного обнаружения сигналов в условиях ис-	
	кусственной рандомизации грубых отсчетов	150
	5.2.1. Определение понятия «грубые статистики»	150
	5.2.2. Формулировка основного принципа линеаризации	
	грубых статистик	152
	5.2.3. Использование метода Монте-Карло	153
	5.2.4. Формулировка нового подкласса задач теории об-	
	наружения	155
	5.3. Стохастические решающие правила и использование	157
	грубой непараметрической статистики	157
	5.3.1. Стохастические критерии обнаружения сигналов.	157
	5.3.2. Рандомизация критерия обнаружения в импульс-	1.00
	ных РЛС 5.3.3. Робастное непараметрическое обнаружение сигна-	162
	лов на основе обобщенно-весового знакового крите-	
	рия	164
	5.3.4. Робастные непараметрические обнаружители сиг-	101
	налов с рандомизацией критерия обнаружения	168
	5.4. Выводы по разделу 5	172

6.	Оптимальные методы измерения параметров сигна-	
	ла	173
	6.1. Формулировка задачи оценки параметров сигнала	173
	6.2. Точечные оценки параметров сигнала и их свойства	179
	6.3. Эффективные оценки	183
	6.4. Основные положения теории статистических оценок	189
	6.5. Некоторые обобщения, относящиеся к оптимизации	
	оценок	192
	6.6. Квантование распределений	196
	6.6.1. Аналого-цифровое преобразование сигналов как процесс стохастического оценивания и квантования	
	распределений. Поправки Шеппарда	196
	6.6.2. Способы квантования сигнала по уровню	196
	6.6.3. Квантование сигналов по уровню как процесс кван-	
	тования распределений	197
	6.6.4. Аналого-цифровое преобразование как процесс	
	стохастического оценивания	198
7.	Методы измерения координат, радиальной скорости	
	цели и промаха	204
	7.1. Радиодальнометрия: методы измерения дальности	207
	7.1.1. Импульсный метод измерения дальности	207
	7.1.2. Фазовый метод измерения дальности	216
	7.1.3. Частотный метод измерения дальности	220
	7.1.4. Ошибки измерения дальности	224
	7.1.5. Следящие измерители дальности	226
	7.1.6. Потенциальная точность измерения дальности	228
	7.2. Углометрия: методы измерения угловых координат	230
	7.2.1. Использование амплитудной модуляции при опре-	
	делении направления	230
	7.2.2. Использование фазовой модуляции при определе-	
	нии направления	232
	7.2.3. Многоканальные пеленгаторы: моноимпульсный с	
	суммарно-разностной обработкой и многобазовый	233
	7.2.4. Пеленгация методом анализа огибающих сигналов.	0.45
	Следящие измерители направления	245
	7.2.5. Потенциальная точность измерения угловых коор-	240
	динат, ошибки измерения	249
	7.3. Измерение радиальной скорости	251
	7.3.1. Эффект Доплера	251
	7.3.2. Доплеровский частотомер	256

	7.3.3. Потенциальная точность измерений скорости и	
	ошибки измерений	260
	7.4. Измерение промаха	261
	7.4.1. Постановка задачи	261
	7.4.2. Описание метода и оценка его эффективности	264
	7.4.3. Сравнение с методом наименьших квадратов	267
8.	Системы селекции движущихся целей	270
	8.1. Общие вопросы построения систем СДЦ	270
	8.1.1. Структурная схема системы СДЦ	271
	8.1.2. Ограничения предельных возможностей	274
	8.2. Цифровые системы СДЦ	278
	8.2.1. Цифровая фильтрация	279
	8.2.2. Дискретное преобразование Фурье	284
	8.3. Анализ и синтез систем СДЦ	286
	8.3.1. Метод приведения небелого шума к белому	286
	8.3.2. Системы СДЦ на основе нерекурсивных цифровых	
	фильтров	288
	8.3.3. Системы СДЦ на основе рекурсивных цифровых	
	фильтров	292
	8.3.4. Системы СДЦ на основе многоканальных допле-	000
	ровских фильтров	293
	8.3.5. Адаптивные системы СДЦ	297
	8.4. Особенности цифровой фильтрации сигналов по направлению с использованием понятия пространственных	
	частот	302
	8.4.1. Использование понятия пространственных частот	302
	8.4.2. Технология DRFM-S и измерение пеленга	304
	8.4.3. Наращивание апертуры окна пространственных	001
	выборок	308
	8.4.4. Некоторые обобщения	309
	8.4.5. Выявление особенностей построения процессора	
	ПВ обработки сигналов, измеряющего частоту и	
	направление приема сигналов, с использованием	
	технологии DRFM-S	310
	8.4.6. Измерение пеленга	311
	8.4.7. Выбор разрядности АЦП	313
	8.4.8. Реализация антенных устройств	314
	8.4.9. Обобщение	314
9.	Принцип неопределенности в радиолокации	316

9.1. Тела неопределенности при использовании сигналов бо-	
льшой длительности	316
9.1.1. Оптимальная обработка когерентных сигналов бо-	
льшой длительности	318
9.1.2. Двумерная автокорреляционная функция сигнала	323
9.1.3. Влияние вида двумерной автокорреляционной	
функции на обнаружение, измерение параметров и	
разрешение сигналов	328
9.1.4. Тела неопределенности радиоимпульсов без внут-	
риимпульсной модуляции	332
9.1.5. Тела неопределенности радиоимпульсов с линейной	
частотной модуляцией. Приложение к спектраль-	
ному анализу	335
9.1.6. Тела неопределенности когерентных пачек радио-	
импульсов	339
9.2. Радиолокация при использовании шумоподобных сто-	249
хастических сигналов	342
9.2.1. Гельеф тела неопределенности шумоподооного сиг-	342
9.2.2. Обработка импульсных непрерывных и длинно-им-	J42
пульсных сигналов	344
9.2.3. Обработка шумоподобных сигналов в режиме сле-	011
винэж	348
9.3. Устранение эффектов дискретизации и квантования в	
РЛС с ФАР	350
9.3.1. Построение цифровых режекторных фильтров и	
компенсаторов помех по частоте и направлению	351
9.3.2. Разрядность весовых коэффициентов цифровых	
фильтров	355
9.3.3. Критерии качества	355
9.3.4. Учет квантования ВК	356
9.3.5. Изменение условий квантования ВК при увеличе-	
нии порядка ЦРФ	357
9.3.6. Квазилинейные обрабатывающие тракты в ФАР с	
ПВ обработкой сигналов	357
9.3.7. Формирование знаковой статистики	358
9.3.8. Моделирование амплитудного джиттера	359
9.3.9. Уровень боковых лепестков	360
Заключение	362
Список сокращений	363
Литература	366